



# REPORT ON PRESENTATION OF FINAL GUIDACE DOCUMENTS AND TRAINING WORKSHOPS

SUMMARY OF MEETINGS

**USAID GOVERNING FOR GROWTH (G4G) IN GEORGIA** 

25 September 2017

This publication was produced for review by the United States Agency for International Development. It was prepared by Deloitte Consulting LLP. The author's views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government.

# REPORT ON PRESENTATION OF FINAL GUIDACE DOCUMENTS AND TRAINING WORKSHOPS

SUMMARY OF MEETINGS

USAID GOVERNING FOR GROWTH (G4G) IN GEORGIA CONTRACT NUMBER: AID-114-C-14-00007 DELOITTE CONSULTING LLP USAID | GEORGIA USAID CONTRACTING OFFICER'S REPRESENTATIVE: REVAZ ORMOTSADZE AUTHOR(S): GEORGIA'S ENVIRONMENTAL OUTLOOK - GEO WORK PLANNING: WATER RESOURCE MANAGEMENT 3600 LANGUAGE: ENGLISH 25 SEPTEMBER 2017

DISCLAIMER:

This publication was produced for review by the United States Agency for International Development. It was prepared by Deloitte Consulting LLP. The author's views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government.

## DATA

| Reviewed by:       | Giorgi Chikovani, Mariam Bakhtadze, Keti Skhireli         |
|--------------------|-----------------------------------------------------------|
| Project Component: | Water Resource Management Component                       |
| Practice Area:     | Water Resource Management                                 |
| Key Words:         | Mashavera River Basin, Kazretula, Guidance Documents, WFD |

### ACRONYMS

| AA    | EU-Georgia Association Agreement                                    |
|-------|---------------------------------------------------------------------|
| GEO   | Georgia's Environmental Outlook                                     |
| G4G   | Governing for Growth in Georgia                                     |
| GoG   | Government of Georgia                                               |
| MENRP | Ministry of Environment and Natural Resources Protection of Georgia |
| NEA   | National Environmental Agency                                       |
| NGO   | Non-Governmental Organization                                       |
| USAID | United States Agency for International Development                  |
| WFD   | Water Framework Directive                                           |

### **INTRODUCTION**

G4G is a five-year USAID funded project implemented by Deloitte Consulting LLP since 2014. G4G aims to support Government of Georgia (GoG) in sustainable management of freshwater resources across multiple competing interests. Within its mandate, G4G implements number of the activities which facilitates improving of regulatory and legal framework for the effective management of river basins in Georgia.

On June 27, 2014 Georgia and the European Union signed Association Agreement (AA). With signing of the Association Agreement, the GoG has made a commitment to bring its laws and practices closer to those of the European Community, including the water protection/management requirements.

Following the signing of AA agreement, the Ministry of Environment and Natural Resources Protection of Georgia (MENRP) has developed a Road Map for the implementation of the EU-Georgia Association Agreement (AA) in the field of environment and climate action. The roadmap enables the MENRP to implement legal approximation, policy making and similar activities in line with the specific requirements of the AA (including water resources management). To support the sound implementation of WFD, the AA Roadmap recommends to GoG to develop guidance documents, providing an overall methodological approach and at the same time being tailored to specific circumstances of Georgia.

G4G awarded a competitive grant to NGO Georgia's Environmental Outlook (GEO) to develop 'Water Resource Management Guidance Documents Applicable for Georgia'. The main objective of this grant is to provide support to GoG in developing the non-legally binding and practical guidance documents on technical issues of the Water Framework Directive (WFD) as well as raise awareness on water management.

The non-governmental organization (NGO) "Georgia's Environmental Outlook - GEO" is implementing this project in close consultations with G4G team, relevant governmental institutions (Water Unit of the MENRP, the National Environmental Agency (NEA) under the MENRP), G4G grantees and other related projects.

Expected results of the grant are as follows: 1. Two selected non-legally binding practical Guidance Documents developed, as technical tools for the implementation of particular provisions of the WFD at national level; 2. Understanding on technical aspects of the WFD raised and capacity of relevant staff of the MENRP in practical application of developed Guidance Documents strengthened; and 3. Information on existing practice as well as international expertize shared among national stakeholders.

The main grant activities are: 1. Selection of Guidance Documents; 2. Preparation of the Guidance Documents applicable for Georgia in close cooperation with the MENRP and in consultation with other key stakeholders; and 3. Organization of stakeholder workshops and trainings.

The grant activity milestones are listed below:

- 1. Inception Phase (selection of Guidance documents, detailed planning, etc.)
- 2. Development of Draft Guidance Document I;
- 3. Development of Draft Guidance Document II and Stakeholder Discussion;
- 4. Finalization of Guidance Documents;
- 5. Presentation of Final Guidance Documents and Trainings;
- 6. Final Phase (Develop a report on project implementation).

This report presents report on presentation of the final Guidance Documents and trainings (5<sup>th</sup> milestone of the project).

# CONTENTS

| ACRONYMS                                                                                                 | III |
|----------------------------------------------------------------------------------------------------------|-----|
| INTRODUCTION                                                                                             | 4   |
| 1. PRESENTATION MEETING AND TRAININGS                                                                    | 6   |
| 1.1 Presentation of Guidance documents                                                                   | 6   |
| 1.2 Trainings                                                                                            | 6   |
| ANNEX 1. GUIDANCE DOCUMENTS PRESENTATION MEETING AGENDA, REGISTRATION<br>FORM AND PHOTOS                 | 8   |
| ANNEX 2. TRAINING MODULE FOR THE TRAINING WORKSHOP ON PRACTICAL<br>APPLICATION OF TWO GUIDANCE DOCUMENTS | 15  |
| ANNEX III. TRAINING AGENDA, REGISTRATION FORM AND PHOTOS                                                 | 41  |

# 1. PRESENTATION MEETING AND TRAININGS

### **1.1 PRESENTATION OF GUIDANCE DOCUMENTS**

Final drafts of the Guidance Document I ("Analysis of Pressures and Impacts and Assessment of Risks Applicable for Georgia") and Guidance Document II ("Classification of Ecological Status and Ecological Potential Applicable for Georgia") were presented and discussed with stakeholders on 19 September, 2017. Representatives of the MENRP, NEA, Environmental Supervision Department of the MENRP, other donor supported related projects and academic sector attended the meeting. In total 24 participants were presented. Meeting Agenda, the list of participants and photos are attached in Annexes I.

After the opening remarks by Ms. Mariam Makarova – Head of the Water Unit if the MENRP and Ms. Khatuna Gogaladze - Project Manager (GEO), the international and national Experts presented the final Guidance Documents to the audience. The presentations were followed by live discussions and remarks.

#### **1.2 TRAININGS**

After a half day presentation meeting, the theoretical part of 2 day training started for the representatives of the National Environmental Agency, Water Unit, Environmental Supervision Department, Environmental Permit Department and others. The training was based on the prepared training module on practical application of the Guidance Documents (Annex II).

The 2-day training was designed in the following way: the half day theoretical part of training was conducted on 19 September, 2017 back to Guidance document presentation meeting as mentioned above. Theoretical part aimed at working on desk exercises and explaining/preparing the targeted audience for the field visit. Specifically, training participants were split in 3 groups and were requested to make calculations using the formulas provided in the Guidance Documents. They were provided by maps and some descriptions of the situation. Based on provided information, participants were tasked to delineate river basin boundaries, identify main pressures, define water status, etc.

Theoretical part of the training was followed by the one-day practical training on 20 September, 2017 in the Mashavera River basin. This basin was selected because of existing diverse pressure sources. The purpose of the practical part of the training was to contribute testing and checking the results that were obtained during the theoretical part of training workshop (on 19 September). Specifically, 5 sites were identified and visited. The sites were selected by taking into account reference condition and existing pressures on the river.

The following observation sites and sampling locations were visited:

1. The Mashavera River, upstream of Dmainisi to assess reference condition regarding to biological (macroinvertebrates) and hydromorphological elements.

2. Section of the Mashavera River near Didi Dmanisi to assess impact from untreated wastewater and agricultural activities.

3. Section of the Mashavera River below Didi Dmanisi to assess impact caused by hydrological regime change.

4. The Kazretula River near Kazreti to assess the impact of mining industry on the Kazretula River and also on the Mashavera River after confluence with Kazretula River.

5. The Mashavera River near village Khidiskuri to assess pressure and impact from dredging materials.

During the filed visits biological sample (macroinvertebrates) was taken and hydromotphplogical observation conducted by using Hydromorphological assessment Protocols. Visual observation of pressures and impacts on the river was also carried out.

After the field visit, a half-day training was conducted on 21 September, 2017. The purpose of this part of training was to summarize and present the field trip findings and debriefing the project beneficiaries.

In total 17 people were trained out of which 5 were men and 12 women. The List of participants, agenda and photos of both theoretical and practical parts of the training are attached in the Annex III.

### ANNEX 1. GUIDANCE DOCUMENTS PRESENTATION MEETING AGENDA, REGISTRATION FORM AND PHOTOS

Date | Time: 19 September, 2017 | 10:30 Location: Hotel "Holiday Inn" #1 26 May Square Tbilisi, Georgia

### AGENDA

Develop Water Framework Directive (WFD) Implementation Guidance Documents for Georgia

#### **19 September**

# PRESENTATION OF THE GUIDANCE DOCUMENTS AND TEORETICAL PREPARATION FOR FIELD TRAINING

- 10:30 11:00 Welcome coffee
- 11:00 11:15 Opening remarks Gizo Chelidze, Head of the Integrated Management Department (MENRP) TBC Ketevan Skhireli, Environmental Specialist (G4G) TBC Khatuna Gogaladze, Project Manager (GEO)

#### Presentations of the Draft Guidance Document I and II

- 11:15 11:45
   Presentation of the final Draft Guidance Document on Analysis of Pressures and Impacts and Assessment of Risks applicable for Georgia

   Peter Roncak – International Expert

   Eliso Barnovi – National Expert
- 11:45 12:00 Discussion/Q&A
- 12:00 12:30 Presentation of the final Draft Guidance document on Classification of Ecological Status and Ecological Potential applicable for Georgia Peter Roncak – International Expert Eliso Barnovi – National Expert

- 12:30 12:45 Discussion/Q&A
- 12:45 13:00 Final remarks Closing of the meeting
- 13:00 14:00 Lunch

### **Registration Form**

|            |                                                                             | Date   Time:<br>Location                              | 19 September, 2017<br>h: Hotel "Holiday Inn"<br>#1 26 May Square<br>Tbilisi, Georgia |
|------------|-----------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|
|            | REG                                                                         | ISTRATION                                             |                                                                                      |
|            | Develop Water Framewo<br>Guidance D                                         | ork Directive (WFD) Implemen<br>locuments for Georgia | tation                                                                               |
| Van        | ne, Organization, Position                                                  | Contact details                                       | Signature                                                                            |
| *          | National Environmental Agency<br>Head of the laboratory<br>Elina Bachhadree | 591 40 40 64<br>Loakcadze Synailwon                   | ostes                                                                                |
| 2.         | GYGG, Envisonmentalist<br>Mariam Bachhtad Ce                                | 58815308L                                             | 2.22 (                                                                               |
| 1.         | Eliro Berenori<br>GEU                                                       | 595118728                                             | 1 fm                                                                                 |
| k.         | Guantsa Ichkiti, MoENRP.<br>Projects Goordination Division                  | 599905225<br>g.ichk: fi@moe.gou.ge                    | 3. rkfron                                                                            |
| i.         | Shard 25hm Juhr Salaly                                                      | 595119704                                             | ä.h                                                                                  |
| <b>i</b> . | PETER RUNCAL                                                                | +421 905619107                                        | RI                                                                                   |
|            | EXPERT RUNCAR                                                               | +421 905619107                                        | RY                                                                                   |

| A         | Organization, Position                                                                                             | Contact details                                              | Signature    |
|-----------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------|
| 1         | Sophio Gabelashvili                                                                                                | 598 54 60 14                                                 |              |
|           | Institute of Coology, Ilia St<br>University, Assistant - Researcher                                                | sofii.a & Ymail. com                                         | 1 Jozna Z    |
|           | Jose and allorgen and<br>songs and allorgen and<br>songs and allorgen and<br>Songs allowed and<br>Song and and and | 558 48 51 41<br>janeta shubitid zeQyda                       | 3.2/2        |
| 7871      | 5074-67 9-832-3-900<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                         | 599070360<br>exaterine. pankvelashvilig<br>Biliauni. edu. ge | 2-5 5/803250 |
| D. U 7 83 | Audant 35839 8901<br>Andread Cysal Warter Uptom<br>Heal Warth 0390m                                                | 599961055<br>gamgebel; tamaz@<br>gmail.com                   | april        |
|           | shor distor lusofe                                                                                                 | 591 688 388<br>vitalimochovarianie<br>smail.com              | 7. 24M       |
| 3         | Joseph Jugo 3 - put fish                                                                                           | 531.40.40.88<br>Vada avto Ogmail.                            | to           |
| 39.6      | high content                                                                                                       | 591 11 95 3 9<br>G. MANYKAPZEC<br>G.MAIL. COM                | 3            |
| 3. 3. 4   | akli Kordzaia NEA<br>hgzel glizbyn Lozzybyc<br>shel Wyorspulis                                                     | 595 999 537<br>Iraklikodz 414@gns.1                          | 25           |
| 20.03     | trendent contrato and and and and and and and and a state of and               | 592 000 440<br>Likashekriladze04@gm                          | c.S.         |

son Bausfree 595)931515 supported as affecting is managelies anniegeticshvilia end moughing ghei con 17. Ketevan Schireli 593 99 50 06 Kskhirel: Ogmail com G4G, USAID Environmental specialist 18. 600,761 monson 591 59 22 99 shownletann bestoragonal Khomiadze 80 Qgmail con Construction 19. asolu superstance 591962036 ashoante ushan beesdores and tamunamerabidoviliogmaildom. "- aphibutin egsshigsonbign 20. Germans accord 598 3924 41 HEMOCESCHERGE LOUDS HEADER 1. Sunday ware of the 9 giorgadze Qyahoo. com. 153 geneohudzaga 21. 599 89 88 80 2023296 13mm Bp 0838325-21 Eka Elizarashvilia SISUIDO ghail. com 22. Ruyh. & g.h 5. 51 J 595000228 Z. parejanagzebmailz 23. 599 547931 Shyah what dgeorge@yandex.ru 24. Khatuna Gopplad 20 5 99 29 28 16 25. GEC.

#### **Photos**







### ANNEX 2. TRAINING MODULE FOR THE TRAINING WORKSHOP ON PRACTICAL APPLICATION OF TWO GUIDANCE DOCUMENTS

#### ACRONYMS

| BOD     | Biological Oxygen Demand                                                                                     |
|---------|--------------------------------------------------------------------------------------------------------------|
| COD     | Chemical Oxygen Demand                                                                                       |
| EQR     | Ecological Quality Ratio                                                                                     |
| EQS     | Environmental Quality Standard                                                                               |
| GIS     | Geographic Information System                                                                                |
| G4G     | Governing for Growth in Georgia                                                                              |
| EPIRB   | Environmental Protection of International River Basins, EU Project                                           |
| EU      | European Union                                                                                               |
| HMWB    | Heavily Modified Water Body                                                                                  |
| IMPRESS | CIS Guidance for the analysis of Pressures and Impacts In accordance with the Water Framework Directive.     |
| REFCOND | Guidance Document No. 10 River and lakes – Typology, reference conditions and classification systems (2003). |

#### CONCEPT OF TRAINING WORKSHOP

#### ON PRACTICAL USE OF

#### DRAFT GUIDANCE DOCUMENT ON ANALYSIS OF PRESSURES AND IMPACTS AND ASSESSMENT OF RISKS APPLICABLE FOR GEORGIA AND DRAFT GUIDANCE DOCUMENT ON THE CLASSIFICATION OF ECOLOGICAL STATUS AND ECOLOGICAL POTENTIAL APPLICABLE FOR GEORGIA

#### **Objectives and tasks**

This activity will contribute to the implementation of the activities defined by the Project ,,Develop Water Framework Directive (WFD) Implementation Guidance Documents for Georgia" (USAID - G4G - RFA#2017 - 001).

Main objective of these tasks will be increasing capacities of the respective national authorities for Pressure and Impact Analysis and Risk Assessment of the water bodies failing environmental objectives and also to assess the Ecological status of the surface water bodies as required by EU Water Framework Directive.

This specific objective of the training workshop will be to conduct practical testing of Draft Guidance Document (DG) on Analysis of Pressures and Impacts and assessment of Risks applicable for Georgia and Draft Guidance document on the Classification of Ecological Status and Ecological Potential applicable for Georgia.

Based on the objectives the following tasks of the training workshops are established:

- 1. Presentation of two Draft GDs for participants to be familiar with the approaches and methods used for both Pressure and Impact Analysis and Risk Assessment and Ecological Status Classification of Surface Water Bodies.
- 2. Field training on the use Draft Guidance Document on Analysis of Pressures and Impacts and assessment of Risks applicable for Georgia and Draft Guidance document on the Classification of Ecological Status and Ecological Potential applicable for Georgia.

The Mashavera River basin was selected based on fact that there are potential pressures both hydromorphological and sources of pollution on water bodies and there are data available from national monitoring programmes and field surveys.

3. Evaluation of both theoretical part of the training workshop and field testing of two Draft GDs.

Results from the training workshop will be used to update the two Draft GDs.

#### Training workshop timeline, locations and institutional arrangement

Training workshop will be provided in Tbilisi, 19 – 21, September.

Thistraining workshop is organized for the beneficiary institutes that are responsible for the implementation of the EU WFD in the field of River Basin Management Plans development in Georgia

#### Training worshop equipment and materials

| Equipment/Item | Quantity                                         | Confirmation |
|----------------|--------------------------------------------------|--------------|
| Car (minibus)  | 1 – 2 depending on the<br>number of participants |              |
| Projector      | 1                                                |              |

| <ul> <li>Data from the JFS Kura in the<br/>Mashavera River basin</li> <li>Mean annual flow and minimum<br/>flow the Mashavera River (Bolnisi),<br/>also historical data can be used</li> <li>Maps on land use (agriculture)</li> <li>Statistical data on population and<br/>agriculture activities (plant crops,<br/>livestock)</li> <li>Statistical data on water<br/>abstraction, hydromorphological<br/>alterations, point sources of<br/>pollution,</li> <li>The river basin area (km2)</li> </ul> | 2 set of Maps printed<br>A3 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| Markers (to draw the line for different risk areas)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 sets                      |  |
| Hydromorphological assessment<br>Protocols                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                          |  |

Instructions for testing the Draft Guidance Document on Analysis of Pressures and Impacts and assessment of Risks applicable for Georgia are in **Annex 1** and Instructions for testing the Draft Guidance Document Classification of Ecological Status and Ecological Potential applicable for Georgia are in **Annex 2** of this document.

### ANNEX 1

### Instructions for testing the Draft Guidance Document on Analysis of Pressures and Impacts and assessment of Risks applicable for Georgia

During the training workshop of this Draft GD both hydromorphological pressures and pressures from pollution sources on the Mashavera River basin will be tested.

Testing of the Draft GD on Ecological Status and Potential Classification system (ESCS) consists of two stages and several steps that are described below.

- Stage 1 Desk work. During this stage data and information available from national monitoring programme and EU projects (EU Kura II, EU Kura III and EU EPRIRB) will be used for analysis, whether due to significant pressures the water bodies in the Mashavera River basin are at risk to fail environmental objectives.
- **Stage 2** Field survey in the Mashavera River basin will be conducted to check the results from the desk work part.

#### Some assumption

Significant pressures were identified in the Mashavera River basin as follows:

- Hydromorphological alterations (impoundment and flow regulations were not recognized as significant pressures)
- Urban waste water (partly treated, untreated waste water)
- Agriculture (both plant and livestock production)

Note: Rural development was not found as significant pressure (household clusters=septic tanks).

Risk categories due to hydromorphological pressures are used as described in table below.

| Risk Category<br># | Risk Category Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                  | Water body <u>at risk</u> to fail the EU WFD environmental objective<br>One or more significant (see risk criteria in Tables below in Chapers 3.2<br>and 3.3) hydromorphological alterations are assessed (barriers,<br>impoundments, water abstraction, hydropeaking) River morphology (if<br>available) is "extensively modified or severely modified'. Water bodies of<br>this group should be considered as heavily modified (HMWB).                                                                                                                          |
| 2                  | Water body possibly at risk to fail the EU WFD environmental<br>objectiveData sets are insufficient to apply criteria and gaps need to be filled. OR<br>No significant (see risk criteria) hydromorphological alterations (barriers,<br>impoundments, water abstraction, hydropeaking) are assessed. However,<br>river morphology (if available) is "moderately modified". This group is<br>temporary, because decision whether these water bodies should belong<br>to category "provisional HMWB" cannot be done and needs additional<br>data and investigation. |

3 Water body <u>not at risk</u> to fail the EU WFD environmental objective No significant (see risk criteria) hydromorphological alterations (barriers, impoundments, water abstraction, hydropeaking) are assessed. River morphology is "near-natural" or "slightly modified". Water bodies of this group should be considered as natural river water bodies regarding hydromorphology. However, other pressures may be assessed.

**Step 1** Make sub-division of the Mashavera River basin up to Khidiskuri cross section into river size categories based on the Tab. 1. For this purpose used Map 1.

| River size category | Channel width | Catchment Area<br>Sizes                    | Description of River<br>Type         |
|---------------------|---------------|--------------------------------------------|--------------------------------------|
| Small               | < 10 m        | $10 \text{ km}^2 - 100 \text{ km}^2$       | Mountain 'gravel'<br>river type      |
| Medium              | 10 – 30 m     | 100 km <sup>2</sup> – 1000 km <sup>2</sup> | Semi-Mountain<br>'gravel' river type |
| Large               | > 30 m        | > 1000 km <sup>2</sup>                     | Lowland/Plain river<br>type          |

Table 1.River size categories



#### Map 1. Topographic map of Mashavera/Khrami River basin

#### HYDROMORPHOLOGICAL PRESSURES

#### Hydrological flow changes

**Step 2.** For assessing the hydrological flow changes use Map 2 and 3 and also data from Tab. 3. From Table 3 is visible that after Didi Dmanisi where the weir is constructed for irrigation water abstraction, river flow discharges are decreased. Naturally, river flow values would be increased due to contributions from the basin tributaries. Based on the data, calculate % decreased in downstream sites and put these data into Tab. 3.



Map 2. Water Abstraction in the Mashavera/Khrami River basin



Map 3. Main irrigation canals in the Mashavera/Khrami River basins

| Table 2 | Hydrological characteristics for I | Kazreti hydrological station |
|---------|------------------------------------|------------------------------|
|         | , ,                                | , ,                          |

| Hydrological characteristics                       | Value |
|----------------------------------------------------|-------|
| Mean annual flow (m <sup>3</sup> /s)               | 5,27  |
| Long-term mean minimum flow (m <sup>3</sup> /s)    | 1,64  |
| Specific runoff coefficient (l/s/km <sup>2</sup> ) | 7,64  |

| Table 2. | Hydromorphological | data for the | Mashavera | River | basin |
|----------|--------------------|--------------|-----------|-------|-------|
|----------|--------------------|--------------|-----------|-------|-------|

| Sampling<br>site<br>number | River     | Location of<br>sampling<br>site | Q (m3/s) | v (m/s) | width<br>(m) | depth<br>(m) | HMQ<br>Score |
|----------------------------|-----------|---------------------------------|----------|---------|--------------|--------------|--------------|
| 1                          | Mashavera | Dmanisi                         | 4,1      | 1,0     | 12,0         | 0,32         | 1,05         |
| 2                          | Mashavera | Didi Dmanisi                    | 6,0      | 1,15    | 17,5         | 0,4          | 1,15         |
| 4                          | Mashavera | Kianeti                         | 5,2      | 1.10    | 12           | 0.37         | 1,22         |

| 5 N | Mashavera | Khidiskuri | 5,4 | 1,1 | 21 | 0,45 | 3,65 |
|-----|-----------|------------|-----|-----|----|------|------|
|-----|-----------|------------|-----|-----|----|------|------|

|  | Table 3. | % of flow changes between Didi Dmanisi | i site and downstream locations |
|--|----------|----------------------------------------|---------------------------------|
|--|----------|----------------------------------------|---------------------------------|

| Sampling<br>site<br>number | River     | Location of sampling site | % of flow change | Risk category |
|----------------------------|-----------|---------------------------|------------------|---------------|
| 1                          | Mashavera | Dmanisi                   | _                |               |
| 2                          | Mashavera | Didi Dmanisi              |                  |               |
| 3                          | Mashavera | Kianeti                   |                  |               |
| 4                          | Mashavera | Khidiskuri                |                  |               |

Step 3. Use thresholds values from Tab. 4 to classify risk categories for locations as indicated in Tab. 3 and insert data into the last column in Tab. 3 and marked them on the Map 1 by using colours (green "not at risk", yellow "possibly at risk" and red "at risk"). An assumption is that natural flow conditions are those in Didi Dmanisi site (6,0 m<sup>3</sup>/s.)

Table 4.Thresholds for hydrological pressures on water body

| Water Body | Threshold (provisional)                                                                                                                                                        | When                               | Note                                       |   |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------|---|
|            | Thresholds for where pressures do not pres                                                                                                                                     | sent a Risk                        |                                            |   |
|            | Combined abstraction and flow regulation                                                                                                                                       | pressures                          |                                            |   |
| River      | Hydrological change relative to natural<br>mean annual flow conditions is for<br>example <10% (However, different %<br>value can be used. Hydrologists will<br>make decision). | Expert<br>opinion                  |                                            |   |
| Т          | hresholds for where pressures place a wate                                                                                                                                     | rbody at Risk                      |                                            |   |
|            | Combined abstraction and flow regulation                                                                                                                                       | pressures                          |                                            |   |
| River      | Percentage of hydrological change<br>relative to natural low flow conditions<br>(e.g. >40% from natural mean annual<br>flow)                                                   | Crossed<br>defined<br>percentiles* | Based of<br>Risk<br>Assessment<br>method** | n |

#### Hydromorphological Alterations

**Step 4. A)** There is one weir below Didi Dmanisi to abstract water for irrigation purposes in the Mashavera River basin. The weir is functioning mainly

during the vegetation season that can partly cover also spawning time for some species of fish (trout). To assess the River and Habitat Continuity Interruption use thresholds from Tab. 5 and marked them on the Map 1 by using colours (green "not at risk", yellow "possibly at risk" and red "at risk").

Table 5. Thresholds regarding the pressure "River and Habitat Continuity Interruption" (adopted from EU EPIRB, 2013)

| <b>River Size</b>    | Not At Risk                                                                                                           | Possibly At Risk                                                                                           | At Risk                                                                                               |
|----------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Small<br>&<br>Medium | No artificial barrier<br>Or barrier that is equipped<br>with a functioning fish bypass<br>facility/fish migration aid | No sufficient information<br>is available if fish bypass<br>facility/fish migration aid is<br>functioning; | One or several artificial<br>barrier in place that hinder<br>fish migration and interrupt<br>habitats |
| Large                | No artificial barrier<br>Or barrier that is equipped<br>with a functioning fish bypass<br>facility/fish migration aid | No sufficient information<br>is available if fish bypass<br>facility/fish migration aid is<br>functioning; | One or several artificial<br>barrier in place that hinder<br>fish migration and interrupt<br>habitats |

**B)** During the field surveys in previous two years, it was found that there are two locations were materials from the Mashavera River are dredged. It was in Kianeti location where around 10 % of investigated area was affected and Khidiskuri where it was more that 50 % of overall investigated area affected

Note: investigated area (in such type of the river as the Mashavera River) is 200 m length and up to 30 m width.

Take the thresholds values from Tab. 6 for risk assessment of the presuure from "dredging and removal of natural material" on the river morphology and marked them on the Map 1 by using colours (green "not at risk", yellow "possibly at risk" and red "at risk").

| Table 6<br>material" | Thresholds regarding the pressure "dredging and removal of natur |                              |                              |  |  |  |
|----------------------|------------------------------------------------------------------|------------------------------|------------------------------|--|--|--|
| <b>River Size</b>    | Not At Risk                                                      | Possibly At Risk             | At Risk                      |  |  |  |
| Small                | No dredging                                                      | <15% of surveyed river reach | >30% of surveyed river reach |  |  |  |
| & Medium             |                                                                  | affected                     | affected                     |  |  |  |
| &                    |                                                                  |                              |                              |  |  |  |
| Large                |                                                                  |                              |                              |  |  |  |

C) For assessment pressures on overall "river morphology" used data from Tab. 7. (Hydromorphological Quality Score values (HMQS) and compare than with threshold classes values from Tab. 8 to classify the locations. After that use threshold values from Tab. 9 to assess the risk categories for the locations and marked them on the Map 1 by using colours (green "not at risk", yellow "possibly at risk" and red "at risk").

Table 7Hydromorphological data for the Mashavera River basin

| Sampling<br>site<br>number | River | Location of sampling site | Q<br>(m3/s) | v<br>(m/s) | width<br>(m) | depth<br>(m) | HMQ<br>Score |
|----------------------------|-------|---------------------------|-------------|------------|--------------|--------------|--------------|
|----------------------------|-------|---------------------------|-------------|------------|--------------|--------------|--------------|

| 1 | Mashavera | Dmanisi                 | 4,1  | 1,0  | 12,0 | 0,32 | 1,05 |
|---|-----------|-------------------------|------|------|------|------|------|
| 2 | Mashavera | Didi Dmanisi            | 6,0  | 1,15 | 17,5 | 0,4  | 1,15 |
| 3 | Mashavera | 0.5 km below<br>Kazreti | 5,2  | 1.09 | 11   | 0.38 | 1,22 |
| 4 | Mashavera | Kianeti                 | 5,2  | 1.10 | 12   | 0.37 | 1,22 |
| 5 | Mashavera | Khidiskuri              | 5,4  | 1,1  | 21   | 0,45 | 3,65 |
| 6 | Poladauri | 0,2 km from<br>mouth    | 0,25 | 0,7  | 4,5  | 0,2  | 1,21 |

# Table 8Preliminary boundaries of the hydromorphological quality classes to assess<br/>river morphology alterations

| Hydromorphol<br>class | ogical quality | HMQS<br>theshold<br>values | Colour   |
|-----------------------|----------------|----------------------------|----------|
| 1                     | High           | 1,0 – 1,7                  | High     |
| 2                     | Good           | 1,8 – 2,5                  | Good     |
| 3                     | Moderate       | 2,6-3,4                    | Moderate |
| 4                     | Poor           | 3,5 – 4,2                  | Poor     |
| 5                     | Bad            | 4,3 – 5,0                  | Bad      |

#### Table 9 Thresholds regarding the pressure on "River Morphology"

| <b>River Size</b> | Not At Risk                   | Possibly At Risk               | At Risk                     |
|-------------------|-------------------------------|--------------------------------|-----------------------------|
| Small             | The surveyed river reach is   | No sufficient information      | >70% of overall water body  |
| & Medium          | assessed with 'high quality': | is available;                  | length is allocated to      |
| &                 | Morphological Quality Class 1 | OR                             | Morphological Quality Class |
| Large             | OR                            | <70% of overall water body     | 3-5                         |
| -                 | <30% of overall water body    | length is allocated to         | OR                          |
|                   | length is allocated to        | Morphological Quality Class 3- | >30% of overall water body  |
|                   | Morphological Quality Class   | 5 <b>and</b> <30% of WB length | length is allocated to      |
|                   | 3-5                           | Morphological Quality Class 4- | Morphological Quality Class |
|                   |                               | 5                              | 4-5                         |

#### PRESSURES FROM THE POLLUTION SOURCES

This chapter focuses on the analysis pressures and impacts that may put a water body at risk of failing environmental objectives due to pollution from point and diffuse sources.

Note: There are no functional waste water treatment plants in the Mashavera River basin. Therefore, pressures from both urban and industrials waste water treatment plants are not assessed in this exercise.

#### Pressures from urban waste water

Only the bigger towns in the Mashavera River basin have sewage systems. People in the villages mainly use septic tanks and pit latrines. The following towns have sewage systems:

- 1) Dmanisi
- 2) Kazreti
- 3) Bolnisi

Not all people living in the towns listed above are connected to the sewage systems; the connection rate is approximately 70 %. The Map 4 presents the population density in the Mashavera/Khrami River basin.



Map 4. Population density in the Mashavera/Khrami River basin

#### Partly treated and untreated urban waste water

Step 5 Partly treated urban waste waters. There is sewer system (canalisation) with primary treatment (mechanical) constructed in Dmanisi, Kazreti and Bolnisi. Use data from Tab. 10 (if possible estimate the number of inhabitants connected in Kazreti on canalisation and use formula below where η will be "0") and formula below to calculate the Load Equivalent discharged from these two agglomerations into the Mashavera River.

D<sub>ww</sub> = (L\*(1-η))/ Q<sub>min,r</sub>

- L: Load equivalents (either for organic matter, nutrients or quantity);
- **η:** Treatment efficiency. Treatment efficiency can be selected according to the knowledge on the performance of the treatment plant. Usually the following figures in Tab. 11 can be assumed as an approximation.

**Qmin,r:** Minimum annual flow of the river [L/s].

Calculated Load Equivalent values fill into the Tab. 12 for sampling locations below town Dmanisi and Bolnisi.

Table 10The distribution of population for urban and rural areas for the Mashavera<br/>River basin region (year 2008)

| District                                        | Urban  | Rural  | Total  |
|-------------------------------------------------|--------|--------|--------|
| Dmanisi                                         | 3,500  | 24,700 | 28,200 |
| Bolnisi                                         | 18,700 | 57,300 | 76,000 |
| Hydrological characteristics                    |        | Value  |        |
| Mean annual flow (m <sup>3</sup> /s)            | 5,27   |        |        |
| Long-term mean minimum flow (m <sup>3</sup> /s) | 1,64   |        |        |

Table 11Values for the treatment efficiency of different wastewater treatmentschemes.

|                       |                  | η [-] : Treatment Efficiency (%) |           |                             |
|-----------------------|------------------|----------------------------------|-----------|-----------------------------|
|                       | Settling<br>Tank | Primary                          | Secondary | Advanced (nutrient removal) |
| Organic matter<br>BOD | 20               | 85                               | 90        | 95                          |
| Organic matter<br>COD |                  | 70                               | 75        | 80                          |
| TSS                   | 50               | >90                              | >90-      | >90                         |
| NH <sub>4</sub>       |                  | <25                              | >90       |                             |
| N <sub>tot</sub>      |                  |                                  |           | 75                          |
| P <sub>tot</sub>      |                  |                                  |           | 80                          |

 Table 12
 Calculated Load Equivalent values and risk categories

| District | Load Equivalent | Risk Category | Discharged volume of waste water (m <sup>3</sup> /s) |
|----------|-----------------|---------------|------------------------------------------------------|
|          |                 |               |                                                      |

Dmanisi

Bolnisi

Kazreti

Sww: Total share of waste water/risk level

- **Step 6.** After calculation load equivalent, use risk criteria values from Tab. 13 to assess the risk categories for the locations and these risk categories fill into the Tab. 12 and later mark them on the Map 1 by using colours (green "not at risk", yellow "possibly at risk" and red "at risk").
- Table 13.Criteria to assess the risk regarding an identified pressure untreated (or partly<br/>treated) waste water

| Risk Category    | Risk Criteria           |
|------------------|-------------------------|
| At Risk          | D <sub>ww</sub> >1,5    |
| Possibly at Risk | 1< D <sub>ww</sub> <1,5 |
| Not at Risk      | D <sub>ww</sub> <1      |

#### Total Share Of Waste Water In The River

This indicator describes the total share of waste water that has been discharged to river from its source. It does not specifically show the expected impact on general physico-chemical parameters, but before all it indicates the likelihood of contamination with conservative substances and substances that tend to accumulate in sediment and biota.

**Step 7.** If not measured calculate the waste water discharges from the Dmanisi, Kazreti and Bolnisi by using following formula:

Qww ( $m^3/s$ ) = number of inhabitants connected on the sewer (canalisation) (in our case it is 70 %)\*0,7\* *unit discharge of 120 l/(inhabitant per day)/24/60/60*.

Calculated data fill into the Tab. 12.

Calculate the indicator Total share of waste water in a river by using the following equation:

#### Sww = ∑Qww/MQr

Description of equation:

- Sww: Total share of waste water in a river at a given cross section along the river (dimensionless)
- Qww: Total of all (current/future) upstream waste water discharges into the river (m<sup>3</sup>/s) (use sum of discharged volumes from Tab. 12)
- MQr: Mean annual flow of the river (m<sup>3</sup>/s) (use data from Tab. 10)

Insert calculated value of Sww into Tab. 12.

- **Step 8.** Use criteria from Tab. 14 to assess the risk regarding an identified pressure Total share of waste water in the Mashavera River basin and assign risk category (in Tab. 12)
  - Table 14.Criteria to assess the risk regarding an identified pressure from Total<br/>share of waste water

| Risk Category    | Risk Criteria                |
|------------------|------------------------------|
| At Risk          | S <sub>ww</sub> > 0,1        |
| Possibly at Risk | 0,05 < S <sub>ww</sub> < 0,1 |
| Not at Risk      | S <sub>ww</sub> < 0,05       |

#### Pressures from diffuse pollution sources

#### Agriculture

Lack of data to represent many pressures and impacts of the diffuse source of pollution is an issue in many countries. Therefore, different models are used to evaluate pressures from diffuse agricultural pollution sources and to grade the water bodies into risk categories "Not at risk", "Possibly at risk" and "At risk". In this case, two indicators are proposed for this purpose.

**Step 9.** Use data from the Tab. 15 on the agricultural land and total area for Dmanisi and Bolnisi Municipalities and calculate indicator for assessment of the pressure from agricultural crop (plant) production by using following formula and insert values into Tab. 16: **Sagri = Aagri/AWB** 

Description of equation:

- Sagri : Share of agricultural area in a given water body catchment [-]
- AWB: Catchment area of the respective water body [km<sup>2</sup>]
- Aagri: Area used for intensive/industrial agriculture in the respective catchment [km<sup>2</sup>]. For example, Aagri can cover arable, intensive grassland and also urban area.

 Table 15.
 Total area and agricultural land area in the Mashavera River basin

| Municipality | Total area,<br>hectares | Total<br>agricultural<br>land, hectares | % not in<br>use | Reasons for not<br>used agricultural<br>land |
|--------------|-------------------------|-----------------------------------------|-----------------|----------------------------------------------|
| Dmanisi      |                         |                                         | 60              | High fuel prices<br>and lack of<br>equipment |
| Bolnisi      |                         | 17156                                   | 60              | High fuel prices<br>and lack of<br>equipment |

 Table 16.
 Indicators and risk assessment values for diffuse sources of pollution

| District | Indicator<br>agricultural<br>crop<br>Sagri | Risk<br>category | Indicator of live<br>stocking<br>Ihus | Risk<br>category |
|----------|--------------------------------------------|------------------|---------------------------------------|------------------|
| Dmanisi  |                                            |                  |                                       |                  |
| Bolnisi  |                                            |                  |                                       |                  |

Step 10. Use calculated values (Sagri) from step 9 and compare with criteria in Tab.
17 to assess the risk from plant production and insert risk categories into Tab.
16.

 Table 17.
 Criteria to assess the risk regarding an identified pressure agriculture crop production

| Risk Category    | Risk Criteria                 |
|------------------|-------------------------------|
| At Risk          | S <sub>agri</sub> > 0,4       |
| Possibly at Risk | 0,2 < S <sub>agri</sub> < 0,4 |
| Not at Risk      | S <sub>agri</sub> <0,2        |

**Step 11.** Use data from Tab. 18 and 19 to calculate the indicator to assess the pressure from animal live stocking. Indicator calculate by using following formula:

#### Ihus = Ue/AWB

Description of equation:

- Ihus: Indicator for animal livestock [LU/ha]
- Ue: Animal livestock unit for grazing livestock and others (e.g. pigs, different poultry species), that is calculated as livestock unit (LU) multiplied by animals number averaged over the whole year for the water body.
- AWB: Catchment area of the respective water body [ha]

Example: If water body has area (AWB) 1000 ha, estimated number of beef cows is 1000, **Ue** is calculated as **LU unit** for cows is 0,75 and multiplied by number of cows. The **Ihus** (indicator of animal live stocking)the ration of Ue and AWB is 0,75.

 Table 18.
 Livestock number over the regions in the Mashavera River basin

| Municipality | No. of<br>Cows | No. of<br>Sheep | No. of<br>Pigs | Total catchment area, hectares |
|--------------|----------------|-----------------|----------------|--------------------------------|
| Dmanisi      | 24000          | 22000           | 4000           |                                |

| Bolnisi | 42000 | 34000 | 4500 |  |
|---------|-------|-------|------|--|
|---------|-------|-------|------|--|

 Table 19.
 Livestock unit values (source: http://adlib.everysite.co.uk/adlib/defra)

|       | Cows | Sheep | Pig |
|-------|------|-------|-----|
| LU/ha | 0,75 | 0,08  | 0,2 |

- **Step 12.** Use calculated values **(lhus)** from step 11 and compare with criteria in Tab. 20 to assess the risk from livestock production and insert risk categories into Tab. 16.
- Table 20. Criteria to assess the risk regarding an identified pressure animal live stocking

| Risk Category    | Risk Criteria              |
|------------------|----------------------------|
| At Risk          | I <sub>hus</sub> >1        |
| Possibly at Risk | 0,3 < I <sub>hus</sub> < 1 |
| Not at Risk      | 0 < I <sub>hus</sub> < 0,3 |

#### **FINAL STEP**

Summarize the results of risk categories for hydromorphological and pollution sources pressures, use "One Out All Out" principle (the worst case) and mark the final risk category for selected locations in the Mashavera River basin by using three colours (green "Not At Risk", yellow Possibly At Risk" and red "At risk") into the Map 1.

#### **ANNEX 2**

### Instructions for testing the Draft Guidance Document Classification of Ecological Status and Ecological Potential applicable for Georgia

Testing of the Draft GD on Ecological Status and Potential Classification system (ESCS) consists of two stages and several steps that are described below.

- Stage 1Desk work. During this stage data from the national monitoring programme of<br/>NEA and EU EPIRB project will be used to estimate the ecological state<br/>classes of the selected sampling location in the Mashavera River basin.
- **Stage 2** Sampling locations in the Mashavera River basin will be visually observed.

#### Some assumption

- It is assumed that Reference Conditions locations were selected and also reference conditions values were established.
- The ESCS for small size mountainous and middle size mountainous river categories are used to classify the river stretches in the Mashavera River basin.
- Classification scheme for Physico-chemical parameters from the EU EPIRB is used to support biological assessment.
- Hydromorphological Quality Score scheme from the EU EPIRB is used to support biological assessment.

| River size category | Channel width | Catchment Area<br>Sizes                    | Description of River<br>Type         |
|---------------------|---------------|--------------------------------------------|--------------------------------------|
| Small               | < 10 m        | $10 \text{ km}^2 - 100 \text{ km}^2$       | Mountain 'gravel'<br>river type      |
| Medium              | 10 – 30 m     | 100 km <sup>2</sup> – 1000 km <sup>2</sup> | Semi-Mountain<br>'gravel' river type |
| Large               | > 30 m        | > 1000 km <sup>2</sup>                     | Lowland/Plain river type             |

The river size categories are as presented in Table below:

During the stage 1, these steps will be done during the testing exercise:

- **Step 1.** Use the data from Tab. 1 to calculate Ecological Quality Elements (EQR) for each metrics and Multimetric Index (by averaging of the 4 metrics) in the Tab.1. EQR is calculated as ratio of Observed biological value/Reference biological value, for each sampling location and fill up the Tab. 2
- Table 1
   Metrics for macroinvertebrates in the Mashavera River basin (spring 2015)

|                      | Metrics                    |     |      |     |                      |  |  |
|----------------------|----------------------------|-----|------|-----|----------------------|--|--|
|                      | Observed biological values |     |      |     |                      |  |  |
| Sampling<br>location | BMWP                       | BBI | IBE  | EPT | Margalef's Diversity |  |  |
| Dmanisi              | 145                        | 10  | 10,6 | 18  | 4,3                  |  |  |
| Didi<br>Dmanisi      | 82                         | 7   | 7,6  | 8   | 3,1                  |  |  |
| Kazretula<br>(mouth) | 12                         | 2   | 2,3  | 2   | 0,4                  |  |  |
| Kianeti              | 24                         | 4   | 5,4  | 3   | 1,8                  |  |  |
| Poladauri            | 94                         | 9   | 9,6  | 13  | 3,8                  |  |  |
| Khidiskuri           | 35                         | 4   | 6    | 2   | 1,8                  |  |  |
|                      | Reference condition values |     |      |     |                      |  |  |
| Middle river         | 145                        | 10  | 12   | 16  | 4,5                  |  |  |
| Small river          | 112                        | 9   | 10   | 14  | 4,1                  |  |  |

Table 2Ecological Quality Ratios for metrics and sampling locations in the Mashavera<br/>River basin

| Sampling<br>location | BMWP | BBI | IBE | EPT | Margalef´s<br>Diversity | ММІ |
|----------------------|------|-----|-----|-----|-------------------------|-----|
| Dmanisi              |      |     |     |     |                         |     |
| Didi<br>Dmanisi      |      |     |     |     |                         |     |
| Kazretula<br>(mouth) |      |     |     |     |                         |     |
| Kianeti              |      |     |     |     |                         |     |
| Poladauri<br>(mouth) |      |     |     |     |                         |     |

| Khidiskuri |
|------------|
|------------|

- Step 2.Use data on EQR from Tab. 2 for each metrics, MMI and each<br/>sampling location and assign for them ecological class by using<br/>Ecological State Classification Scheme in Tab. 3 and 4. Fill up these<br/>classes to the Tab. 5 by using colours as defined by the EU WFD.
- Table 3Classification scheme for the middle gravel mountainous river type in the<br/>Mashavera/Khrami River basin

|                              | Middle gravel mountainous type |       |       |       |       |  |  |
|------------------------------|--------------------------------|-------|-------|-------|-------|--|--|
| Class                        | - I                            | Ш     | Ш     | IV    | V     |  |  |
| EQR                          | >0,83                          | >0,6  | >0,4  | >0,2  | ≤0,2  |  |  |
| BMWP Score                   | >120                           | >90   | >62   | >31   | ≤31   |  |  |
| EQR                          | >0,9                           | >0,6  | >0,4  | >0,2  | ≤0,2  |  |  |
| BBI                          | >9                             | >6    | >4    | >2    | ≤2    |  |  |
| EQR                          | >0,9                           | >0,6  | >0,4  | >0,2  | ≤0,2  |  |  |
| IBE                          | >10                            | >6,6  | >4,4  | >2,2  | ≤2,2  |  |  |
| EQR                          | >0,88                          | >0,6  | >0,4  | >0,2  | ≤0,2  |  |  |
| EPT                          | >16                            | >11   | >7    | >4    | ≤4    |  |  |
| EQR                          | >0,78                          | >0,6  | >0,4  | >0,2  | ≤0,2  |  |  |
| Margalef's Diversity Index   | >3,68                          | >3,06 | >2,04 | >1,02 | ≤1,02 |  |  |
| Multimetrics Index (MMI) EQR | >0,86                          | >0,6  | >0,4  | >0,2  | ≤0,2  |  |  |

# Table 4Classification scheme for the small gravel mountainous river type in the<br/>Khrami River basin

|            | Small gravel mountainous type |      |      |      |      |  |  |
|------------|-------------------------------|------|------|------|------|--|--|
| Class      | I.                            | Ш    | Ш    | IV   | V    |  |  |
| EQR        | >0,88                         | >0,6 | >0,4 | >0,2 | ≤0,2 |  |  |
| BMWP Score | >108                          | >74  | >49  | >25  | ≤25  |  |  |
| EQR        | >0,88                         | >0,6 | >0,4 | >0,2 | ≤0,2 |  |  |

| BBI                          | >8    | >5,4  | >3,6  | >1,8  | ≤1,8  |
|------------------------------|-------|-------|-------|-------|-------|
| EQR                          | >0,98 | >0,6  | >0,4  | >0,2  | ≤0,2  |
| IBE                          | >8,9  | >5,4  | >3,6  | >1,8  | ≤1,8  |
| EQR                          | >0,73 | >0,6  | >0,4  | >0,2  | ≤0,2  |
| EPT                          | >11   | >9    | >6    | >3    | ≤3    |
| EQR                          | >0,77 | >0,6  | >0,4  | >0,2  | ≤0,2  |
| Margalef's Diversity Index   | >3,3  | >2,58 | >1,72 | >0,86 | ≤0,86 |
| Multimetrics Index (MMI) EQR | >0,85 | >0,6  | >0,4  | >0,2  | ≤0,2  |

| Table 5 | Classes of the sampling location ba | ased on the biological assessment |
|---------|-------------------------------------|-----------------------------------|
|---------|-------------------------------------|-----------------------------------|

|                      | Classes |     |     |     |                         |     |
|----------------------|---------|-----|-----|-----|-------------------------|-----|
| Sampling<br>location | BMWP    | BBI | IBE | EPT | Margalef´s<br>Diversity | ММІ |
| Dmanisi              |         |     |     |     |                         |     |
| Didi<br>Dmanisi      |         |     |     |     |                         |     |
| Kazretula<br>(mouth) |         |     |     |     |                         |     |
| Kianeti              |         |     |     |     |                         |     |
| Poladauri<br>(mouth) |         |     |     |     |                         |     |
| Khidiskuri           |         |     |     |     |                         |     |

Step 5 Use scheme below to support biological assessment with physicochemical and hydromorphological quality elements. For this purpose use data from Tab. 6 and 7. For classification of physico-chemical parameters use scheme presented in Tab. 8 and for hydromorphological quality elements use scheme presented in Tab. 9.



Table 8Classification scheme for general physico-chemical parameters for Middle<br/>mountainous and river types (EU EPIRB project, 2016)

| Parameter           |      | unit  | I.         | Ш        | Ш     |
|---------------------|------|-------|------------|----------|-------|
| Temperature         | Mean | °C    | <20        | <23      | ≥23   |
| Conductivity        |      | μS/cm |            |          |       |
| рН                  |      | -     | (7,0; 8,5) | (6,0;    | ≤ 6,0 |
|                     |      |       |            | 7,0>     | or    |
|                     |      |       |            | or       | ≥ 9,0 |
|                     |      |       |            | <8,5; 9) |       |
| Dissolved<br>oxygen | Min  | mg/l  | >7,0       | >6,0     | ≤6,0  |
| BOD₅                | Mean | mg/l  | <3,0       | <5,0     | ≥5,0  |
| COD-Cr              | Mean | mg/l  | <7,0       | <15,0    | ≥15,0 |
| N-NH <sub>4</sub>   | Mean | mg/l  | <0,2       | <0,5     | ≥0,5  |
| N-NO <sub>3</sub>   | Mean | mg/l  | <2,0       | <3,0     | ≥3,0  |
| P-PO <sub>4</sub>   | Mean | mg/l  | <0,04      | <0,08    | ≥0,08 |

| Hydromorphological quality class |          | HMQ Score<br>values | Colour |
|----------------------------------|----------|---------------------|--------|
| 1                                | High     | 1,0 – 1,7           |        |
| 2                                | Good     | 1,8 – 2,5           |        |
| 3                                | Moderate | 2,6 - 3,4           |        |
| 4                                | Poor     | 3,5 – 4,2           |        |
| 5                                | Bad      | 4,3 – 5,0           |        |

Table 9Preliminary boundaries of the hydromorphological quality classes<br/>(SHMI, 2004)

Step 6.Filled up the Tab. 10 with final Ecological Status classes for the sampling locations by<br/>using principle "One Out All Out" (by using colour as defined by the WFD).

Table 10Final ecological classes for the sampling locations in the Mashavera River basin

|         | Sampling locations |                      |         |                      |            |  |  |  |
|---------|--------------------|----------------------|---------|----------------------|------------|--|--|--|
| Dmanisi | Didi<br>Dmanisi    | Kazretula<br>(mouth) | Kianeti | Poladauri<br>(mouth) | Khidiskuri |  |  |  |

Class

#### FINAL STEP

Outline the ecological status into the Map 1 of the Mashavera River basin by using colour as defined by the WFD.

#### Exercise on Relationship stressors and biological quality elements

**Step A.** For testing relationship between stressors and macroinvertebrates metrics please used data from Tab. 6 and data on arable land (% of agricultural land) and MD means morphological alterations expressed from 0 (no alterations) to 1 (maximum alterations). In this case use 0,1 for Dmanisi and 0,3 for Bolnisi.

Note: in case of Bolnisi sampling site the area of arable land has to be calculated as sum for both Municipalities (Dmanisi and Bolnisi).

**Step B.** Calculate the EPT and Margalef's Diversity Index metrics for macroinvertebrates by using following formulas:

**General model:** Number of EPT families = 4.91 - 0.52\*BOD5 - 0.026\*ARABLE + 7.73\*MD;

**Slovak model:** Number of EPT families = 2.67 - 0.22\*BOD5 + 0.003\*ARABLE + 9.26\*MD;

#### MI=DO\*(T+2\*DO)\*(T+EC+BOD5)

Where:

MI: Margalef's Diversity Index,
DO: dissolved oxygen (mg/l),
T: water temperature (°C),
EC: Electrical Conductivity of the water (µmS/cm), and
BOD<sub>5</sub>: 5 days biological oxygen demand (mg/l).

#### FINAL STEP

Compare calculated values of metrics with observed data in Tab. 11.

| Type of data | General EPT | Slovak EPT | Margalef's DI |
|--------------|-------------|------------|---------------|
| Calculated   |             |            |               |
| Observed     | 10          | 10         | 3,1           |

# Table 6 Physico-chemical parameters (annual mean values)

| Sampling site | River     | Location of sampling site | Temperature, °C | Dissolved oxygen, mg/L | Oxygen saturation, % | Hd | Conductivity | Total Suspended<br>solids, mg/L | BOD5, mg/l | COD (Cr <sub>2</sub> 0 <sub>7</sub> <sup>2-)</sup> , mg 0 <sub>2</sub> /l | Ammonium mg/L | Nitrate, mg/L | Phosphates, mg/L | Cu microg/L | Ni microg/L | Zn, mg/L |
|---------------|-----------|---------------------------|-----------------|------------------------|----------------------|----|--------------|---------------------------------|------------|---------------------------------------------------------------------------|---------------|---------------|------------------|-------------|-------------|----------|
| 1             | Mashavera | Kazreti upstream          |                 |                        |                      |    |              |                                 |            |                                                                           |               |               |                  |             |             |          |
| 2             | Mashavera | Bolnisi<br>downstream     |                 |                        |                      |    |              |                                 |            |                                                                           |               |               |                  |             |             |          |
| 3             | Kazretula | Mouth                     |                 |                        |                      |    |              |                                 |            |                                                                           |               |               |                  |             |             |          |
| 4             | Poladauri | Mouth                     |                 |                        |                      |    |              |                                 |            |                                                                           |               |               |                  |             |             |          |

Table 7

Hydromorphological data for the Mashavera River basin

| Sampling<br>site<br>number | River     | Location of sampling site | Q (m3/s) | v (m/s) | width (m) | depth (m) | HMQ Score |
|----------------------------|-----------|---------------------------|----------|---------|-----------|-----------|-----------|
| 1                          | Mashavera | Dmanisi                   | 4,1      | 1,0     | 12,0      | 0,32      | 1,05      |
| 2                          | Mashavera | Didi Dmanisi              | 6,0      | 1,15    | 17,5      | 0,4       | 1,15      |

USAID | GOVERNING FOR GROWTH (G4G) IN GEORGIA Report on Presentation of Final Guidace Documents and training workshops

| 3 | Mashavera | 0.5 km below Kazreti | 5,2  | 1.09 | 11  | 0.38 | 1,22 |
|---|-----------|----------------------|------|------|-----|------|------|
| 4 | Mashavera | Kianeti              | 5,2  | 1.10 | 12  | 0.37 | 1,22 |
| 5 | Mashavera | Khidiskuri           | 5,4  | 1,1  | 21  | 0,45 | 3,65 |
| 6 | Poladauri | 0,2 km from mouth    | 0,25 | 0,7  | 4,5 | 0,2  | 1,21 |

# ANNEX III. TRAINING AGENDA, REGISTRATION FORM AND PHOTOS

**Training Agenda** 

Date | Time: 19 September, 2017 | 14:00 Location: Hotel "Holiday Inn" #1 26 May Square Tbilisi, Georgia

### AGENDA

# Develop Water Framework Directive (WFD) Implementation Guidance Documents for Georgia

#### **19 September**

#### Theoretical preparation for field training

- 14:00 15:00 Theoretical application of the Draft Guidance Document I Analysis of Pressures and Impacts and Assessment of Risks on the Mashavera River basin (desk work) Peter Roncak – International Expert Eliso Barnovi – National Expert
- 15:00- 15:30 Discussion/Q&A
- 15:30-16:00 Coffee Break
- 16:00 17:00 Theoretical application of the Draft Guidance Document II Classification of Ecological Status and Ecological Potential on the Mashavera River basin (desk work)

Peter Roncak – International Expert

Eliso Barnovi – National Expert

17:00-17:30 Discussion/Q&A

#### 17:00-17:45 Closing of the theoretical part of the training workshop

#### 20 September

#### PRACTICAL TRAINING (continued)

This activity will contribute to testing and checking the results that were obtained during the theoretical part (the first day) of the training workshop. Field surveys will concentrate on the direct reconnaissance sites and location having pressure on the surface water bodies and visiting monitoring sites used for the ecological status assessment in the first day of the training workshop.

Location of the training course: Mashavera River basin

9:30 -10:00 Meeting of training participants (Radisson Blu Iveria Hotel, 1 Rose Revolution Square) 10:00 **Departure from Tbilisi** 11:40 Arrival to the field (Mashavera River) **Practical assignments:** 11:40-12:30 Reconnaissance of the sampling location upstream Dmanisi as candidate on the reference condition location (macroinvertebrates) for ecological status classification. Overall physical habitat and micro habitat conditions will be assessed. 12:30-13:00 Reconnaissance of the sampling location near Didi Dmanisi will be assessed to present the impact from untreated waste water (Dmanisi) and agricultural activities. 13:00-13:30 Reconnaissance of the water abstraction point below Didi Dmanisi to assess the pressure on hydrological regime change. 13:30 -14:30 Lunch 14:30-15:30 Reconnaissance of the sampling location Kazreti to assess the impact of mining industry on river Kazretula and also on the Mashavera River after confluence with the Kazretula River. 15:30-16:30 Reconnaissance of the sampling location Khidiskuri due to assessment

#### pressure from dredging material

- 16:30-17:00 Debriefing on the field surveys
- 17:00 Departure from the field
- 18:30 Arrival to Tbilisi

#### 21 September

Date | Time: 21 September, 2017 | 10:00 Location: Hotel "Holiday Inn" #1 26 May Square Tbilisi, Georgia

#### SUMMARIZATION OF THE FIELD SURVEY RESULTS

The purpose of this part is to discuss and incorporate the findings from field surveys into two Draft Guidance Documents.

- 10:00 10:30 Welcome coffee
- 10:30 11:30 Presentation of findings from the field surveys Experts and training participants
- 11:30 12:30 Discussion/Q&A
- 12:30 12:45 Final remarks Closing of the meeting
- 12:45 13:00 Lunch

### **Registration Form**

| REGISTRATION         Develop Water Framework Directive (WFD) Implementation Guidance Documents for Georgia         Name, Organization, Position         1.       Contact details       Signation         1.       Signation       Signation       Signation         Signation       Signation       Signation       Signation         1.       Signation       Signation       Signation       Signation |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Develop Water Framework Directive (WFD) Implementation Guidance Documents for Georgia       Name, Organization, Position     Contact details     Signal       1.     3000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| Name, Organization, Position Contact details Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| abomb 20 30 60 mg hogh best 592 000 440 C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sture  |
| and susation vehalon usualan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bythe  |
| 2. Jon somstage - hyphosom storme et s(95) 93 15 15<br>Sobstass hyphoson eller Varend film.<br>Alla Boomson eller y weight with eller of anniegettashuiliegtader o<br>Wareson open yrgennind offin Work                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8449   |
| 3. Jamos signing signal ghydyr 531404064<br>Wiggoppon hoakcadzesgrail.com ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | frest  |
| * 339 Jene 32 protocher 591.40.40.88<br>July 2 July walaarto @gmailon 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | to     |
| 5. 370 m 2593 haba 539 688 388 3.<br>32 Jul 2 hizbogi 120 36 1 vitalimacharaniani @ 3.<br>3 mail. com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23 Arg |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | In     |

|     | e, Organization, Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contact details                                         | Signature         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------|
| 1   | PETER RONCALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | peter roucel Oquid in                                   | DA                |
|     | EXPERT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | I PM              |
| 8.  | Jobannes decort<br>Jobannes decort<br>Nortestade noressfractures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | qgiorgadze Q.yahaz.com                                  | debarno l         |
| 9.  | orsain aphiantiganan<br>zingamlenziaan bizestogezizembed<br>293 on Bodgber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bamunamezabishvili@gmail<br>com.                        | a . 37/2. Saltana |
| 10. | 352 Jrn Bachadzing n<br>Bhgdalp Kznan Bps 2698 37 BM<br>ggs My Bagen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Eka. Elizarashvili<br>Qgmail.com                        | 7. 8m g           |
| 11. | Kuphilo gohgi 51 47<br>gapanler gon & 20 253 Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Z. pazjanadze<br>Omail. zu .                            | 8 gm              |
| 12. | 3 maks. 20075 1 J. 2. Glock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G.MAMUKADZEQ<br>GMAIL. CON<br>591 11 4539               | 3                 |
| 13. | Joby John Samp John Samp - And Sa | Janeta <b>sh</b> ubitidze Q<br>Jahoo.com<br>558 4851 41 | y. Home           |
| 4.  | neun grätt zart, ommensent og                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 598546014                                               | 6 martin          |
| 5.  | John J Lyhmas<br>John 2m L Plyson " Unenlyhi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m. makarova B<br>mol, gov. ge                           | af                |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                   |

orsam zozzozon zomzanie oczal wanenijomm 599961055 gamgebel: tamaz@ Gyone Waamongogm gmail.com 17. mans on 531 592 299 \$JOMES 3 shy ambraves non Bogar abreads m Khomia dze 80 Gy gma; Soll on stap Ingron Com 18. b scy6 599 29 28 16 not 19. 20. GEO,

USAID | GOVERNING FOR GROWTH (G4G) IN GEORGIA Report on Presentation of Final Guidace Documents and training workshops

#### Photos





USAID | GOVERNING FOR GROWTH (G4G) IN GEORGIA Report on Presentation of Final Guidace Documents and training workshops







USAID Governing for Growth (G4G) in Georgia Deloitte Consulting Overseas Projects LLP Address: 5 L. Mikeladze Street, Tbilisi Phone: +995 322 240115 / 16 E-mail: info@g4g.ge